Plot Specific Heat of Solids (a) Dulong-Petit law, (b) Einstein
distribution function, (c) Debye distribution function for high temperature and
low temperature and compare them for these two cases
Program :
clf;clc
T = linspace(0,1000,50) // Absolute temperature at K unit
theta_E = 230 // Einstein teamperature in K unit for copper
theta_D = 343 // Debye teamperature in K unit for copper
function y=DP(T) //Dulong-Petit law
y = ones(T) // Here, y = Specific Heat/3R
endfunction
plot(T,DP,'*k')
A = (T./(theta_E))
if T == 0 then
y = 0 // Here, y = Specific Heat/3R
else
x = 1./A
y = ((x^2)*exp(x))/((exp(x)-1)^2)
end
endfunction
plot(T,E,'+k')
B = (T./theta_D)
if T == 0 then
y = 0 // Here, y = Specific Heat/3R
else
z = B
y = (3*(z^3))*integrate("(exp(x)*(x^4))/((exp(x)-1)^2)","x",0,1./z)
end
endfunction
plot(T,D,'k',"linewidth",2)
xgrid
output:
0 মন্তব্যসমূহ