Solve the s-wave Schrödinger equation for the ground state and the first excited state of the hydrogen atom where, d^2u/dr^2=A(r)u(r),A(r)=(2m/ℏ^2)[V(r)−E],V(r)=−e^2/r. where, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wave functions. Remember that the ground state energy of the hydrogen atom is ≈-13.6 eV. Take e=3.795 (eVÅ), ħc= 1973(eVÅ) and m=0.511×10^6 eV/c^2 .
clf;clc; charge = 3.795 // in (eV.A)^1/2 c_hcut = 1973 // in (eV.A) m = 0.511e6 //in (eV/C^2) r_min =0.01 r_max = 10 N= 1000 r=linspace(r_min , r_max, N) d = r(2)-r(1) s =(c_hcut^2)/(2*m*d^2) //now build the matix K // 0. 0. 0. 0. 0. 0. // 1. 0. 0. 0. 0. 0. // 0. 1. 0. 0. 0. 0.=diag(ones(N-1, 1),-1)[(where N=6);] // 0. 0. 1. 0. 0. 0. // 0. 0. 0. 1. 0. 0. // 0. 0. 0. 0. 1. 0. // // 0. 1. 0. 0. 0. 0. // 0. 0. 1. 0. 0. 0. // 0. 0. 0. 1. 0. 0. // 0. 0. 0. 0. 1. 0.=diag(ones(N-1,1),1))[(where N=6);] // 0. 0. 0. 0. 0. 1. // 0. 0. 0. 0. 0. 0. // // -2. 0. 0. 0. 0. 0. // 0. -2. 0. 0. 0. 0. // 0. 0. -2. 0. 0. 0.=-2*eye(N,N)[(where N=6);] // 0. 0. 0. -2. 0. 0. // 0. 0. 0. 0. -2. 0. // 0. 0. 0. 0. 0. -2. K = -s*(diag(ones(N-1, 1),-1)-2*eye(N,N)+diag(ones(N-1,1),1)) //now build the matix K // 0. 0. 0. 0. 0. 0. // 1. 0. 0. 0. 0. 0. // 0. 1. 0. 0. 0. 0.=diag(ones(N-1, 1),-1)[(where N=6);] // 0. 0. 1. 0. 0. 0. // 0. 0. 0. 1. 0. 0. // 0. 0. 0. 0. 1. 0. // // 0. 1. 0. 0. 0. 0. // 0. 0. 1. 0. 0. 0. // 0. 0. 0. 1. 0. 0. // 0. 0. 0. 0. 1. 0.=diag(ones(N-1,1),1))[(where N=6);] // 0. 0. 0. 0. 0. 1. // 0. 0. 0. 0. 0. 0. // // -2. 0. 0. 0. 0. 0. // 0. -2. 0. 0. 0. 0. // 0. 0. -2. 0. 0. 0.=-2*eye(N,N)[(where N=6);] // 0. 0. 0. -2. 0. 0. // 0. 0. 0. 0. -2. 0. // 0. 0. 0. 0. 0. -2 function y=potential(r) y=-(charge^2)./r endfunction V = diag(potential(r)) H = K+V [U,E]= spec(H) E = diag(E) disp("The ground state energy is : "+string(E(1))+ " eV .") disp("The first excited state energy is : "+string(E(2))+ " eV .") U_ground =U(:,1)./r' U_1st_excited = U(:,2)./r' U_ground = abs(U_ground)/max(abs(U_ground)) U_1st_excited =abs(U_1st_excited)/max(abs(U_1st_excited)) plot(r' , U_ground, '+r') plot(r',U_1st_excited,'-b') xlabel("r(angstrom)","font_size" , 4) ylabel("wave function","font_size" , 4) j=legend(["ground state", "1st excited state" ]) j.font_size = 4 title("H atom with Coulomb Potential ", "font_size", 4)
out put:
The ground state energy is : -13.612724 eV ." "The first excited state energy is : -3.4026108 eV ."solve the s-wave radial schrödinger equation for an atom where, d^2y/dr^2=a(r)u(r),a(r)=2m/ħ^2[v(r)−e],v(r)=−e^2/r where m is the reduced mass of the system , for the screened coulomb potential v(r)=(−e^2/r)*e^−r/a find the energy (in ev) of the ground state of the atom to an accuracy of three significant digits. also, plot the corresponding wave function. take e=3.795 (evå), and a=3 å, 5 å, and 7 å in the units of ħc = 1973(evå) and m=0.511×10^6 ev/c^2 . the ground state energy is expected to be above "-12" ev in all three cases.
0 মন্তব্যসমূহ