ADS

Problem - 2 Solve the s-wave radial Schrödinger equation for an atom

Solve the s-wave radial Schrödinger equation for an atom

Where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened Coulomb potential


Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wave function. Take e=3.795 (eVÅ), and a=3 Å, 5 Å, and 7 Å in the units of ħc = 1973(eVÅ) and m=0.511×10eV/c^2
. The ground state energy is expected to be above -12 eV in all three cases 


Input:
clf;clc;
e = 3.795 // in (eV.angstrom)^1/2
c_hcut = 1973 // in (eV.angstrom)
m = 0.511e6 //in (eV/C^2)
r_min = 0.01 
r_max = 5 
N = 1000 
r = linspace(r_min,r_max,N) 
d = r(2)-r(1) 
s = (c_hcut^2)/(2*m*d^2) 
//now build the  matix K 
//   0.   0.   0.   0.   0.   0.
//   1.   0.   0.   0.   0.   0.
//   0.   1.   0.   0.   0.   0.=diag(ones(N-1, 1),-1)[(where N=6);]
//   0.   0.   1.   0.   0.   0.
//   0.   0.   0.   1.   0.   0.
//   0.   0.   0.   0.   1.   0.
// 
//  0.   1.   0.   0.   0.   0.
//   0.   0.   1.   0.   0.   0.
//   0.   0.   0.   1.   0.   0.
//   0.   0.   0.   0.   1.   0.=diag(ones(N-1,1),1))[(where N=6);]
//   0.   0.   0.   0.   0.   1.
//   0.   0.   0.   0.   0.   0.
//   
//   -2.   0.   0.   0.   0.   0.
//   0.  -2.   0.   0.   0.   0.
//   0.   0.  -2.   0.   0.   0.=-2*eye(N,N)[(where N=6);]
//   0.   0.   0.  -2.   0.   0.
//   0.   0.   0.   0.  -2.   0.
//   0.   0.   0.   0.   0.  -2
K = -s*((diag(ones(N-1,1),-1))-2*(eye(N,N))+(diag(ones(N-1,1),1)))
//now build the  matix V
function y=potential(r, a) 
    y = -(((e^2)./r).*exp(-r./a)) 
endfunction 
a0 = [3,5,7] //given the value of a in question
for a = a0 
    V = diag(potential(r,a)) 
    H = K+V 
    [U,E] = spec(H) 
    E = diag(E) 
    disp("The ground state energy is : "+string(E(1))+ " eV ,when a = "+ string(a)+ " Å .") 
    U_ground =U(:,1)./r'
U_ground = abs(U_ground)/max(abs(U_ground)) 
    scf() 
    plot(r' , U_ground, 'r')
 xlabel("r(angstrom)","font_size" , 4)
    ylabel("wave function","font_size" , 4)
    legend(["ground state" ])
 title("An atom with screened Coulomb Potential, when a = "+string(a)+" angstrom" ,"font_size", 4) 

end
output:
"The ground state energy is : -8.9428111 eV ,when a = 3 Å ."
"The ground state energy is : -10.492118 eV ,when a = 5 Å ."
"The ground state energy is : -11.208588 eV ,when a = 7 Å ."

একটি মন্তব্য পোস্ট করুন

0 মন্তব্যসমূহ