Where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened Coulomb potential
Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wave function. Take e=3.795 (eVÅ), and a=3 Å, 5 Å, and 7 Å in the units of ħc = 1973(eVÅ) and m=0.511×10eV/c^2
. The ground state energy is expected to be above -12 eV in all three cases
Input: clf;clc; e = 3.795 // in (eV.angstrom)^1/2 c_hcut = 1973 // in (eV.angstrom) m = 0.511e6 //in (eV/C^2) r_min = 0.01 r_max = 5 N = 1000 r = linspace(r_min,r_max,N) d = r(2)-r(1) s = (c_hcut^2)/(2*m*d^2) //now build the matix K // 0. 0. 0. 0. 0. 0. // 1. 0. 0. 0. 0. 0. // 0. 1. 0. 0. 0. 0.=diag(ones(N-1, 1),-1)[(where N=6);] // 0. 0. 1. 0. 0. 0. // 0. 0. 0. 1. 0. 0. // 0. 0. 0. 0. 1. 0. // // 0. 1. 0. 0. 0. 0. // 0. 0. 1. 0. 0. 0. // 0. 0. 0. 1. 0. 0. // 0. 0. 0. 0. 1. 0.=diag(ones(N-1,1),1))[(where N=6);] // 0. 0. 0. 0. 0. 1. // 0. 0. 0. 0. 0. 0. // // -2. 0. 0. 0. 0. 0. // 0. -2. 0. 0. 0. 0. // 0. 0. -2. 0. 0. 0.=-2*eye(N,N)[(where N=6);] // 0. 0. 0. -2. 0. 0. // 0. 0. 0. 0. -2. 0. // 0. 0. 0. 0. 0. -2 K = -s*((diag(ones(N-1,1),-1))-2*(eye(N,N))+(diag(ones(N-1,1),1))) //now build the matix V function y=potential(r, a) y = -(((e^2)./r).*exp(-r./a)) endfunction a0 = [3,5,7] //given the value of a in question for a = a0 V = diag(potential(r,a)) H = K+V [U,E] = spec(H) E = diag(E) disp("The ground state energy is : "+string(E(1))+ " eV ,when a = "+ string(a)+ " Å .") U_ground =U(:,1)./r' U_ground = abs(U_ground)/max(abs(U_ground)) scf() plot(r' , U_ground, 'r') xlabel("r(angstrom)","font_size" , 4) ylabel("wave function","font_size" , 4) legend(["ground state" ]) title("An atom with screened Coulomb Potential, when a = "+string(a)+" angstrom" ,"font_size", 4) end output: "The ground state energy is : -8.9428111 eV ,when a = 3 Å ." "The ground state energy is : -10.492118 eV ,when a = 5 Å ." "The ground state energy is : -11.208588 eV ,when a = 7 Å ."
0 মন্তব্যসমূহ